/** Author : Siddhant Swarup Mallick
* Github : https://github.com/siddhant2002
*/
/**
* A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
* The robot can only move either down or right at any point in time.
* The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
* How many possible unique paths are there?
*/
/** Program description - To find the number of unique paths possible */
package com.thealgorithms.dynamicprogramming;
import java.util.*;
public class UniquePaths {
public static boolean uniquePaths(int m, int n, int ans) {
int[] dp = new int[n];
Arrays.fill(dp, 1);
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[j] += dp[j - 1];
}
}
return dp[n - 1] == ans;
// return true if predicted answer matches with expected answer
}
// The above method runs in O(n) time
public static boolean uniquePaths2(int m, int n, int ans) {
int dp[][] = new int[m][n];
for (int i = 0; i < m; i++) {
dp[i][0] = 1;
}
for (int j = 0; j < n; j++) {
dp[0][j] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1] == ans;
// return true if predicted answer matches with expected answer
}
// The above mthod takes O(m*n) time
}
/**
* OUTPUT :
* Input - m = 3, n = 7
* Output: it returns either true if expected answer matches with the predicted answer else it returns false
* 1st approach Time Complexity : O(n)
* Auxiliary Space Complexity : O(n)
* Input - m = 3, n = 7
* Output: it returns either true if expected answer matches with the predicted answer else it returns false
* 2nd approach Time Complexity : O(m*n)
* Auxiliary Space Complexity : O(m*n)
*/