{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"from bs4 import BeautifulSoup\n",
"import requests"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"def make_soup(url):\n",
" return BeautifulSoup(requests.get(url).text, 'html.parser')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"url = 'https://www.indiatoday.in/top-stories'\n",
"indiatoday = 'https://www.indiatoday.in'"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"top_stories = make_soup(url).find_all('div',{'class':'catagory-listing'})\n",
"articles_list = []\n",
"for story in top_stories:\n",
" image = story.find('img')['src']\n",
" title = story.find('a').text\n",
" story_soup = make_soup(indiatoday + story.find('a')['href'])\n",
" brief = story.find('p').text\n",
" \n",
" article = []\n",
" for description in story_soup.find_all('div',{'class':'description'}): \n",
" for paragraph in description.find_all('p'):\n",
" article.append(paragraph.text)\n",
"\n",
" articles_list.append([title, brief, article, image])"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame(articles_list, columns=['Title', 'Brief Intro', 'Paragraph', 'Image Url'])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}