def kthPermutation(k, n):
"""
Finds k'th lexicographic permutation (in increasing order) of
0,1,2,...n-1 in O(n^2) time.
Examples:
First permutation is always 0,1,2,...n
>>> kthPermutation(0,5)
[0, 1, 2, 3, 4]
The order of permutation of 0,1,2,3 is [0,1,2,3], [0,1,3,2], [0,2,1,3],
[0,2,3,1], [0,3,1,2], [0,3,2,1], [1,0,2,3], [1,0,3,2], [1,2,0,3],
[1,2,3,0], [1,3,0,2]
>>> kthPermutation(10,4)
[1, 3, 0, 2]
"""
factorials = [1]
for i in range(2, n):
factorials.append(factorials[-1] * i)
assert 0 <= k < factorials[-1] * n, "k out of bounds"
permutation = []
elements = list(range(n))
while factorials:
factorial = factorials.pop()
number, k = divmod(k, factorial)
permutation.append(elements[number])
elements.remove(elements[number])
permutation.append(elements[0])
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod()