from __future__ import annotations
from string import ascii_letters
def encrypt(input_string: str, key: int, alphabet: str | None = None) -> str:
"""
encrypt
=======
Encodes a given string with the caesar cipher and returns the encoded
message
Parameters:
-----------
* input_string: the plain-text that needs to be encoded
* key: the number of letters to shift the message by
Optional:
* alphabet (None): the alphabet used to encode the cipher, if not
specified, the standard english alphabet with upper and lowercase
letters is used
Returns:
* A string containing the encoded cipher-text
More on the caesar cipher
=========================
The caesar cipher is named after Julius Caesar who used it when sending
secret military messages to his troops. This is a simple substitution cipher
where very character in the plain-text is shifted by a certain number known
as the "key" or "shift".
Example:
Say we have the following message:
"Hello, captain"
And our alphabet is made up of lower and uppercase letters:
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
And our shift is "2"
We can then encode the message, one letter at a time. "H" would become "J",
since "J" is two letters away, and so on. If the shift is ever two large, or
our letter is at the end of the alphabet, we just start at the beginning
("Z" would shift to "a" then "b" and so on).
Our final message would be "Jgnnq, ecrvckp"
Further reading
===============
* https://en.m.wikipedia.org/wiki/Caesar_cipher
Doctests
========
>>> encrypt('The quick brown fox jumps over the lazy dog', 8)
'bpm yCqks jzwEv nwF rCuxA wDmz Bpm tiHG lwo'
>>> encrypt('A very large key', 8000)
's nWjq dSjYW cWq'
>>> encrypt('a lowercase alphabet', 5, 'abcdefghijklmnopqrstuvwxyz')
'f qtbjwhfxj fqumfgjy'
"""
# Set default alphabet to lower and upper case english chars
alpha = alphabet or ascii_letters
# The final result string
result = ""
for character in input_string:
if character not in alpha:
# Append without encryption if character is not in the alphabet
result += character
else:
# Get the index of the new key and make sure it isn't too large
new_key = (alpha.index(character) + key) % len(alpha)
# Append the encoded character to the alphabet
result += alpha[new_key]
return result
def decrypt(input_string: str, key: int, alphabet: str | None = None) -> str:
"""
decrypt
=======
Decodes a given string of cipher-text and returns the decoded plain-text
Parameters:
-----------
* input_string: the cipher-text that needs to be decoded
* key: the number of letters to shift the message backwards by to decode
Optional:
* alphabet (None): the alphabet used to decode the cipher, if not
specified, the standard english alphabet with upper and lowercase
letters is used
Returns:
* A string containing the decoded plain-text
More on the caesar cipher
=========================
The caesar cipher is named after Julius Caesar who used it when sending
secret military messages to his troops. This is a simple substitution cipher
where very character in the plain-text is shifted by a certain number known
as the "key" or "shift". Please keep in mind, here we will be focused on
decryption.
Example:
Say we have the following cipher-text:
"Jgnnq, ecrvckp"
And our alphabet is made up of lower and uppercase letters:
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
And our shift is "2"
To decode the message, we would do the same thing as encoding, but in
reverse. The first letter, "J" would become "H" (remember: we are decoding)
because "H" is two letters in reverse (to the left) of "J". We would
continue doing this. A letter like "a" would shift back to the end of
the alphabet, and would become "Z" or "Y" and so on.
Our final message would be "Hello, captain"
Further reading
===============
* https://en.m.wikipedia.org/wiki/Caesar_cipher
Doctests
========
>>> decrypt('bpm yCqks jzwEv nwF rCuxA wDmz Bpm tiHG lwo', 8)
'The quick brown fox jumps over the lazy dog'
>>> decrypt('s nWjq dSjYW cWq', 8000)
'A very large key'
>>> decrypt('f qtbjwhfxj fqumfgjy', 5, 'abcdefghijklmnopqrstuvwxyz')
'a lowercase alphabet'
"""
# Turn on decode mode by making the key negative
key *= -1
return encrypt(input_string, key, alphabet)
def brute_force(input_string: str, alphabet: str | None = None) -> dict[int, str]:
"""
brute_force
===========
Returns all the possible combinations of keys and the decoded strings in the
form of a dictionary
Parameters:
-----------
* input_string: the cipher-text that needs to be used during brute-force
Optional:
* alphabet: (None): the alphabet used to decode the cipher, if not
specified, the standard english alphabet with upper and lowercase
letters is used
More about brute force
======================
Brute force is when a person intercepts a message or password, not knowing
the key and tries every single combination. This is easy with the caesar
cipher since there are only all the letters in the alphabet. The more
complex the cipher, the larger amount of time it will take to do brute force
Ex:
Say we have a 5 letter alphabet (abcde), for simplicity and we intercepted the
following message:
"dbc"
we could then just write out every combination:
ecd... and so on, until we reach a combination that makes sense:
"cab"
Further reading
===============
* https://en.wikipedia.org/wiki/Brute_force
Doctests
========
>>> brute_force("jFyuMy xIH'N vLONy zILwy Gy!")[20]
"Please don't brute force me!"
>>> brute_force(1)
Traceback (most recent call last):
TypeError: 'int' object is not iterable
"""
# Set default alphabet to lower and upper case english chars
alpha = alphabet or ascii_letters
# To store data on all the combinations
brute_force_data = {}
# Cycle through each combination
for key in range(1, len(alpha) + 1):
# Decrypt the message and store the result in the data
brute_force_data[key] = decrypt(input_string, key, alpha)
return brute_force_data
if __name__ == "__main__":
while True:
print(f'\n{"-" * 10}\n Menu\n{"-" * 10}')
print(*["1.Encrypt", "2.Decrypt", "3.BruteForce", "4.Quit"], sep="\n")
# get user input
choice = input("\nWhat would you like to do?: ").strip() or "4"
# run functions based on what the user chose
if choice not in ("1", "2", "3", "4"):
print("Invalid choice, please enter a valid choice")
elif choice == "1":
input_string = input("Please enter the string to be encrypted: ")
key = int(input("Please enter off-set: ").strip())
print(encrypt(input_string, key))
elif choice == "2":
input_string = input("Please enter the string to be decrypted: ")
key = int(input("Please enter off-set: ").strip())
print(decrypt(input_string, key))
elif choice == "3":
input_string = input("Please enter the string to be decrypted: ")
brute_force_data = brute_force(input_string)
for key, value in brute_force_data.items():
print(f"Key: {key} | Message: {value}")
elif choice == "4":
print("Goodbye.")
break
The Caesar cipher is a simple cipher and one of the best known encryption algorithms. It is very simple to encrypt, decrypt and intercept. The Caesar cipher is a substitution cipher where each letter in the plain-text (decoded text) is replaced by a letter a certain number of spaces to the right of the letter in the alphabet. (The amount of spaces is called the key or shift and is only known by the sender and intended receiver).
Disclaimer: Do not attempt to encrypt personal data or serious messages with this cipher!!! It takes only half a second to crack by a computer!
n
.n
letters away from the letter. (Ex: for a key of 1
, a
would become b
, z
would become a
, etc.)n
be the secret key the message is encoded in.n
letters behind in the alphabet from the letter.c
would be b
, a
would be z
with a key of 1
.
4. The message should now be decoded
Let us say we are sending a secret message to a friend.
The Caesar cipher is a fun substitution cipher
abcdefghijklmnopqrstuvwxyz
. For the uses of this tutorial, case doesn't matter. (On a shift of 1
: A
will become B
, a
will become b
)T
. The letter 6 letters away is Z
. We add Z
to the message.h
. The letter 6 letters away is n
. Our message is now Zn
Znk Igkygx iovnkx oy g lat yahyzozazout iovnkx.